2株拮抗放线菌复合防治番茄青枯病的研究

[1] 康贻军, 沈敏, 王欢莉, 等. 两株植物根际促生菌对番茄青枯病的生物防治效果评价[J]. 中国生物防治报, 2012, 28(2):255-261.
[2] 袁高庆, 陈媛媛, 范腕腕, 等. 3,4,5-三羟基苯甲酸甲酯防治番茄青枯病的物理作用方式及其对番茄根系次生代谢物质的响[J]. 植物保护, 2016, 42(6):80-85.
[3] 李玉洪, 李业勇, 吴永琼, 等. 抗青枯病番茄砧木品种宝砧6号的选育[J]. 长江蔬菜, 2016(16):43-45.
[4] 范梅, 谢莉, 蔡鹏, 等. 番茄嫁接抗青枯病栽培技术[J]. 四川农业科技, 2015(7):37-38.
[5] Shen G H, Zhang S T, Liu X J, et al. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field[J]. Applied Microbiology and Biotechnology, 2018(22):9781-9791.
[6] Ho T H, Chuang C Y, Zheng J L, et al. Bacillus amyloliquefaciens strain PMB05 intensifies plant immune responses to confer resistance against bacterial wilt of tomato[J]. Phytopathology, 2020, 110(12):1877-1885.
[7] Chen M C, Wang J P, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology, 2020, 20(1):160-172.
[8] 郑雪芳, 刘波, 朱育菁, 等. 植物疫苗鄂鲁冷特对番茄青枯病的田间防治效果[J]. 植物保护学报, 2018, 45(5):1096-1102.
[9] Ayomide F M, Adejare R O, Adebola O O. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants[J]. Archives of Phytopathology and Plant Protection, 2020, 53(12):1-16.
[10] 卢继英, 林纬, 黎起秦, 等. 拮抗植物病害的放线菌的筛选[J]. 农业网络信息, 2005(1):67-69.
[11] Shen T, Lei Y H, Pu X D, et al. Identification and application of Streptomyces microflavus G33 in compost to suppress tomato bacterial wilt disease[J]. Applied Soil Ecology, 2021(1):157-168.
[12] 黄明媛, 顾文杰, 张发宝, 等. 节杆菌YB6发酵滤液稳定性测定及其对盆栽番茄青枯病的防治效果[J]. 广东农业科学, 2013(18):75-78.
[13] 王丽丽, 周旭东, 李国安, 等. 番茄青枯病病原菌拮抗菌株的筛选及其田间防控作用研究[J]. 植物保护, 2017, 43(1):182-185.
[14] 李程, 黎妍妍, 杨小琼, 等. 增效复合拮抗菌对烟草青枯病病原菌抑制效果研究[J]. 安徽农业科学, 2020, 48(4):128-131, 140.
[15] 吕建林, 刘二明, 柏连阳, 等. 烟草青枯病生防菌混合接种对其定殖及防效的影响[J]. 中国生物防治, 2010, 26(2):200-205.
[16] 黄小琴, 刘勇, 张蕾, 等. 烟草青枯病生防芽胞杆菌协同防治药剂的筛选和复配[J]. 农药, 2015, 54(11):848-851.
[17] Zheng X F, Wang J P, Chen Z, et al. A Streptomyces sp. strain:isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants[J]. Biological Control, 2019(1):136-174.
[18] Zhao J W, Han L Y, Yu M Y, et al. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum[J]. Microorganisms, 2019, 7(9):360-377.
[19] 曹瑱艳, 申屠旭萍, 俞晓平. 杭白菊枯萎病的病原菌分离鉴定及淀粉酶产色链霉菌对其防治效果[J]. 中国生物防治学报, 2019, 35(2):265-271.
[20] Pakorn W A, Waranya C, Christopher W, et al. Antibacterial activity of cyclo (L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria[J]. Natural Product Research, 2016, 30(17):1-5.
[21] 王杰, 龙世芳, 王正文, 等. 番茄青枯病防治研究进展[J]. 中国蔬菜, 2020(1):22-30.
[22] Amano S I, Morota T, Kano Y K,et al. Promomycin, a polyether promoting antibiotic production in Streptomyces spp.[J]. Antibiotics, 2010(63):486-491.
[23] Smaoui S, Mathieu F, Elleuch L, et al. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain[J]. World Journal of Microbiol Biotechnology, 2012(28):793-804.
[24] Wadetwar R N, Patil A T. Production of antibiotic from actinomycetes isolated from Nagpur region and optimization of parameters to increase the yield[J]. Pharmaceutical Sciences and Research, 2013, 4(8):3094-3098.
[25] 包慧芳, 侯敏, 王宁, 等. 一种深红紫链霉菌及其应用[P]. 中国发明专利, 2013, C10566781.6.
[26] 赖宝春, 戴瑞卿, 林明辉, 等. 一株拮抗放线菌的鉴定及其对香蕉枯萎病的生防效应[J]. 南方农业学报, 2020, 51(4):836-843.
[27] 赖宝春, 吴振强, 戴瑞卿, 等. 琯溪蜜柚炭疽病拮抗放线菌的筛选和鉴定[J]. 热带作物学报, 2020, 41(9):1876-1882.
[28] 赖宝春, 吴振强, 王家瑞, 等.深红紫链霉菌及其生物防治菌剂和制备方法[P]. 中国发明专利, 2020, CN109658341 B.
[29] 徐威主编. 微生物学实验(第二版)[M]. 北京:中国医药科技出版社, 2014, 227-229.
[30] 王丽丽, 李洋, 林乐志. 抑制番茄青枯病拮抗菌株的田间生防效果[J]. 浙江农业科学, 2018, 59(2):291-292.
[31] 陈志谊, 刘邮洲, 刘永锋, 等. 拮抗细菌菌株之间的互作关系及其对生物防治效果的影响[J]. 植物病理学报, 2005, 35(6):539-544.
[32] 葛红莲, 郭坚华, 祁红英, 等. 复合菌剂AR99防治辣椒青枯病[J]. 植物病理学报, 2004, 34(2):162-165.
[33] 李勤奋, 邓晓, 武春媛, 等. 复合菌剂对番茄抗病促生的效果研究[J]. 生态环境学报, 2012, 21(11):1836-1840.
[34] 谭兆赞, 林捷, 刘可星, 等. 复合微生物菌剂对番茄青枯病和土壤微生物多样性的影响[J]. 华南农业大学学报, 2007, 28(1):45-49.
[35] Lee S M, Kong H G, Song G C, et al. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. International Society for Microbial Ecology, 2021,15(1):330-347.
[36] Marian M, Morita A, Koyama H, et al. Enhanced biocontrol of tomato bacterial wilt using the combined application of Mitsuaria sp. TWR114 and nonpathogenic Ralstonia sp. TCR112[J]. General Plant Pathology, 2019, 85(2):142-154.
 

2024-10-01 17:04 点击量:13