飞机燃油系统微生物污染主动防治涂层研究进展

2023-09-13 浏览量:

飞机燃油系统微生物污染主动防治涂层研究进展

随着航空事业的高速发展,买菜做饭13825404095飞机在国防经济领域发挥着巨大作用。但航空燃油系统微生 物污染问题给飞行带来了严重安全隐患[1-2],美国空军年损失高达 60 亿美元[3]。因此,如何 解决飞机燃油系统中的微生物污染问题是满足我国航空事业高质量发展的重大需求,摆在科 研工作者面前的紧迫性任务。水作为微生物生长的必要条件,是飞机燃油系统微生物污染的 关键源头[4]。然而飞机燃油在运输、储存和使用过程中不可避免会吸收水分,造成油箱设备 内部积水。然而,现有飞机燃油系统微生物防治措施:如定期放水、人工清洁除菌、添加化 学抗菌剂等“被动”人工防治措施效果有限、人工负担重,特别是在海洋性环境(海军舰载机) 使用过程中问题突出,无法满足实际需求。因此,如果能改变水在燃油系统的“负面”属性, 实现飞机燃油系统“主动”抗菌功能,降低微生物污染,减少人工干预负担,对保证飞机飞行 安全具有重要的现实意义。


一、现有飞机燃油系统微生物主要防治措施 1.1 定期放水

严格脱水并过滤清除燃油中污染物、保持燃油较高洁净度、使微生物不 具备相应生长条件是防止微生物生长繁殖的必要措施。然而,飞机燃油在运输、储存和使用 过程中会不可避免溶解部分水分,尤其是在海洋高温高湿条件下。由于太阳辐照和外界环境 温度昼夜变化诱发机舱内外产生压差,从外界大气吸入并截留潮气,机舱内相对湿度可高达 100%,造成油箱设备内部积水。因此,燃油系统中整体结构油箱底部、燃油过滤器、燃油 管线凹部等燃油和水界面处容易产生积水,油水界面成为微生物主要生长地方[5-6]。目前, 多采取定期对燃油箱放水降低航油含水量,或定期对燃油箱进行人工物理清洁,但效果较为 有限,且人工干预负担较重[7]。


1.2 添加抗菌剂

目前,抗菌剂主要包括天然抗菌剂、有机抗菌剂和无机抗菌剂 3 种[8-9]。目前,民航普遍使用国外的 KATHON FP1.5(异噻唑啉酮类)和 BIOBOR JF(硼烷类)有 机类抗菌剂。无机抗菌剂由于安全性、持久性、广谱抗菌性、耐热性等方面存在优势。如硝 酸银中的银离子作为抗菌剂,其最低抑菌浓度(MIC)可低至 2.1 μg/mL [10],且微生物不容 易产生耐药性。但添加抗菌剂方法直接引入新污染源,可能会对燃油的质量造成伤害,因此 十分注意抗菌剂的添加量。常规广谱杀菌剂虽然对灭菌有一定效果,但由于用量较大,常常 使燃料的某些质量指标不合格,所以杀菌剂的使用范围还受到限制。目前只有在飞机燃料系 统微生物检测结果为中度或重度污染时才进行杀菌剂处理[11],但有报道长期使用同一种有机 杀菌剂容易导致微生物耐药性产生[12] 。


1.3 超声波及紫外线协同杀菌

利用超声波及紫外线协同杀菌发法是一种物理抗菌方法,其特点为不需要向航油内加入其他物质而达到抗菌目的。因此,不会将新污染源引入航 油体系中。然而,仅利用超声波或紫外线杀灭微生物的效率不理想,一般先采用紫外线处理 后,再利用超声波杀菌效果较好。在杀菌过程中超声波发生器需要连续工作,有较大能耗。因此,在整个航油存储过程中不能持续使用该方法持续灭菌。以超声波发生器为灭菌设备, 需要额外使用专门的设备进行操作。


1.4 抗菌涂层

发展抗菌涂层是目前比较前沿的做法[13-14]。防腐涂料(如 036-2 涂料等) 自身具有较优异的抗渗透性,漆膜阻抗高,具有优良的抗电化腐蚀性、附着力强、坚硬耐磨 性好、不污染油品,且施工方便、快捷。防腐涂料自身如果抗菌性能不足有可能会变为微生 物培养基促进微生物的生长繁殖,因此会在防腐涂层中掺杂抗菌剂提高防污能力。蔡森等[15] 利用纳米 ZnO、复合抗菌剂等制备了一种金属燃油舱的防霉型导静电涂料。赵欣、李梦等[16] 则基于 AgO 抗菌剂发展了针对航油储运设备的缓释性抗菌复合涂层。Pompa 等[17-18]研究表 明由于油箱中特殊的微环境,硫酸盐还原菌等产生的硫离子容易使游离的银离子沉淀,而使 抗菌活性大幅降低,因此仍需提高适应飞机燃油系统的高效抗菌能力。从现有燃油系统微生物防治手段来看,目前存在的主要问题是:(1)仍以“被动”的 防治模式为主,人工干预负担较重;(2)需复合多种抗菌剂,或采用提高抗菌浓度提高抗 菌活性;(3)缺乏在燃油系统的油水界面中对水敏感,能够“主动”释放抗菌物质的“主动” 抗菌涂层,从而提高在污染初期微生物杀除效率。因此,发展有效适应飞机燃油系统的“广 谱高效”、“主动持续”的新型微生物防治策略具有重要价值。


二、现有“主动”抗菌涂层构筑 2.1 基于扰乱质子浓度梯度的“主动持续”金属微电池抗菌涂层构筑

针对“主动持续”,金属微电池抗菌是近年来发展起来的新型抗菌表面改性技术。其利用 在潮湿介质中电化学的主动反应性抗菌,并已在医用植入设备应用中显示出巨大优势。刘宣 勇、曹辉亮等在这一方面做出了开拓性工作[19],巧妙利用金属电偶腐蚀和细菌等微生物表 面的电子传导链对环境的应激响应,通过等离子体浸没银离子注入技术在钛表面镶嵌纳米银 颗粒,基于“肖特基接触”,银/钛构成电偶腐蚀对,形成金属微电池涂层。当细菌接触金属 微电池表面时,银/钛电偶腐蚀对的阴极发生析氢反应,大量消耗细菌周围质子,严重“扰乱” 细菌能量合成功能所依赖的“质子浓度梯度(PMF)”,从而达到杀菌目的。有意思的是,微 电池抗菌涂层作用过程中,银只是作为微电池阴极,本身并未被消耗,而这将大大减少银纳 米颗粒进入正常细胞内的可能性。Shtansky 等[20]进一步研究表明,该类微电池抗菌过程中溶 液环境内银离子浓度控制在 0.35 μg/L 以下,远低于银离子最低杀菌浓度(MBC) 10 ppb,证 明是“微电池效应”起到了关键杀菌作用。在此基础上,刘宣勇等[21]进一步开发出兼具“抗菌 和成骨”性能的“双功能微电池”钛金属改性层。杨柯等[22]也报道了在不锈钢表面设计了类似 的铜基“微电池效应”抗菌,并表现出持续的抑菌作用,并已开始应用于医用植入设备。作为 一个近几年刚刚兴起的研究领域,目前国际上仅有少数课题组对微电池抗菌进行研究并获得初步进展。金属“微电池效应”抗菌涂层的“主动持续”特性非常值得借鉴,但其目前只是针对 人体植入设备进行设计,对于真菌、霉菌等是否是通过扰乱质子浓度梯度来达到抗菌性能的 机制仍不清晰[23]。由于飞机燃油舱多采用高性能铝合金(如 2024、7075 等),铝和银的金 属电位差较大,容易发生电化学腐蚀,因此针对飞机油箱的抗菌涂层设计亟须仍需新的设计 思路和策略。


2.2 基于金属腐蚀原理释放活性氧物质的“主动持续”抗菌涂层构筑

活性氧类(ROS)是一类高效广谱抗菌物质:典型的 ROS 物质包括超氧自由基(·O2-)、 过氧化氢(H2O2)、羟自由基(·OH)等。作为强氧化剂,其广泛杀灭细菌、芽胞、病毒、 真菌等微生物的作用已被证实,而且其杀灭速度较氯快 600—3000 倍[24]。其中,·OH 的杀 菌性能最强,·O2-次之。目前,水处理中常用的高级氧化过程(AOPs)就是基于·OH。由于·OH 存留时间短,且几乎没有任何残留,比其它氧化剂如氯或臭氧等杀菌抗污更具有优越性[25]。Fenton 反应和类 Fenton 反应都是 AOPs 技术中产生·OH 的重要反应,其通过分解双氧水 (H2O2)产生大量·OH,从而表现出高效去污除菌的效果。近年来,类 Fenton 反应引起了 研究学者的特别关注,一系列不涉及 Fe 2+的类 Fenton 反应相继被报道[26-27],且催化效率被大 幅提高[28]。目前已证明 H2O2能在一些过渡金属(如银、铜等)表面能发生类 Fenton 反应分 解生成·OH、·O2-等强杀菌物质[29]。但是,目前绝大部分所报道的(类)Fenton 反应仍需要 外部供给 H2O2来启动反应。氧还原反应(ORR)可在外部供能条件下生成 H2O2物质:氧还原反应(ORR)是电化 学中常见的阴极反应可提供 H2O2物质。根据反应条件和电极材料不同,可以出现不同的氧 还原反应机理和决速步骤。目前,普遍接受的是在碱性条件四电子 ORR 和酸性条件二电子 ORR 两类途径[30]。四电子 ORR 受热力学平衡控制,因此选择一类合适的微电极材料使阴极 反应选择性地发生二电子 ORR 有一定难度。近年来不少课题组开始关注这一科学问题[31-33]。迄今,已有文献报道在一些金属、合金、碳材料上均被证实可选择性的发生两电子氧还原反 应:其中包括金[34],银[35],铂/汞合金[36]等。但是,目前绝大部分所报道的二电子氧还原反 应仍采用外部能量供给(如外部电源、光催化)来启动反应。韩国科学与技术研究院的 Myoung-Ryul Ok 研究组[37]报道了氧化钛表面涂覆镁,利用阳极牺牲法提供电子,引发氧化 钛表面自发进行二电子氧还原反应生成 H2O2、·O2-等 ROS 物质,进而利用镁离子促进成骨 特性。这一研究表明,当有合适的外部电子供体存在下,在无外部能量供给下自发进行氧还 原反应生成 ROS 物质是可能的。


2.3 利用微生物胞外电子传递的“主动持续”抗菌涂层构筑

胞外电子传递(EET)被认为是地球生命最古老的呼吸方式,但人类对其了解相对较少 [38-39]。目前,胞外电子传递的电子传递方式和机制主要是基于希瓦氏菌属(Shewanella)和 地杆菌属(Geobacter)的研究而提出的[40-41]。近年来,关于胞外电子传递的工作近年来一直 是微生物领域研究的热点问题,其中关于细胞外电子穿梭体和导电纳米线介导的直接电子传 递相关工作分别发表在 Cell [42]和 Nature 杂志[43-44]。由于微生物胞外电子过程在自然界中普遍存在,并且在能源利用[45]和环境修复[46]等方面具有广阔的应用前景,但是低效的电子传 递一直是其在实际应用中的关键瓶颈[47],如何强化微生物胞外电子传递过程吸引了众多科 学家的注意[48]。利用微生物胞外电子传递抗菌是一个刚刚兴起的领域,目前仅有少数课题 组对其进行研究。如香港城市大学朱剑豪课题组[49-50]报道的金或银修饰的二氧化钛纳米管 (半导体)体系、金修饰的氧化锌纳米管(半导体)体系[51]、天津大学吴水林组[52]在 HA/MoS2 涂层改性的 Ti6Al4V 钛合金体系(MoS2兼具导体、半导体性质)研究表明通过胞外电子传 递对大肠杆菌、金黄色葡萄球菌具有显著的抗菌性能。


图 1 金属微电池抗菌改性层设计原理示意图


三、针对燃油油水界面的“主动”抗菌涂层构筑

主动释放活性氧和胞外电子传递联用的“主动持续”金属微电池抗菌涂层的构筑。西北 工业大学戚震辉课题组[53]报道了一种由双金属微电极体系构成的可在油水界面自催化的新型材料(WFA,图 1)。该种材料在水介质中通过串联二电子氧还原反应(2e ORR)和类 芬顿反应(Fenton-like reaction)生成杀菌物质双氧水 H2O2和其他活性氧物质 ROS。选择贵 金属银(Ag)和过渡金属钌(Ru)构筑双金属(Ag-Ru)微电极体系的模型。银离子具有 良好的杀菌活性,经过特定处理[54]后,可以与钯、钌、铂等金属形成微电池催化微区。通 过电化学实验和 H2O2与其他 ROS 的检测,验证了串联反应的存在和可行性。并在无自然光 照射下,WFA 银-钌双金属颗粒微电极在 2 h 内对飞机燃油系统内常见菌(如大肠杆菌、铜 绿假单胞菌、枯草芽孢杆菌和硫酸盐还原菌[55]等)的消毒效率均大于 99.9999%。ROS 猝灭 实验和 Ag +电感耦合等离子体质谱(ICP-MS)结果表明,H2O2和·O2-是其广谱活性和高效杀 菌性能的主要作用物质。同时,WFA 双金属微电极体系可以在飞机燃油系统无光黑暗条件 下进行高效杀菌。基于金属离子的特性,双金属体系可以很容易地通过电化学沉积的方法涂 覆在不同形状的金属表面,如不锈钢。同时,燃油微生物与微电池涂层表面接触时有明显的 电流产生;当使用死的菌与涂层作用时,电流强度明显减弱、ROS 释放现象基本消失。因 此,微生物胞外电子传递是揭示燃油系统微生物在微电池涂层表面主动杀除机制的关键突破 口。该双金属微电极杀菌体系利用水作为介质,同时适用于燃油体系黑暗条件,可为高效非 化学自催化杀菌材料的开发提供新的思路。


四、总结与展望

飞机燃油系统微生物污染问题给飞机飞行带来严重安全隐患。赋予燃油系统“主动”抗 菌功能,在微生物污染初期提高微生物杀除效率,尽可能减少人工干预负担,使抗菌模式由 “被动”转向“主动”模式,是目前亟需开展研究的方向之一。同时,飞机燃油系统微生物 防护是涉及材料学、生物学、电化学等多学科交叉的共性问题,具有鲜明的学科交叉特征, 因此开发新型高效燃油系统微生物防治方法有挑战性,但又迫在眉睫。从材料学角度分析, 现有研究揭示的金属微电池改性层在抗菌性能方面表现突出,且微电池改性层可在燃油体系 油水界面处协同释放具有广谱高效的活性氧杀菌物质,可提高飞机燃油系统微生物防治的 “广谱高效”和“主动持续”性。然而,目前微生物-微电池涂层材料间具体电子传递机制 尚不清楚,微生物胞外电子传递作为微生物与外界环境物质相互作用的重要途径又将这一问 题指向了重要的生物学现象及其内在机制。揭示微生物胞外电子传递在微电池涂层表面主动 杀菌过程中的具体作用机制及调控因素,深入阐明微生物胞外电子传递这一广泛存在的生物 现象有望为燃油系统微生物主动防治机制研究奠定重要的前期基础。由于该领域目前的研究 刚刚起步,在材料的选择设计上仍需兼顾涂层应用所涉及的燃油油箱环境的实际性能要求, 这对具体研究开发提出了新的要求。总而言之,设计飞机燃油系统微生物防治主动型涂层策 略,保障飞机安全飞行及我国航空事业高质量发展具有重要指导意义。


五、梦能服务与支持 1、免费样品

如果您对我公司的工业重防腐油漆产品有需要或者申请样品试用,请与我们的客服人员取得联系。400-878-0506


油漆样品适用范围:


用于新建项目:验证油漆配套的可行性、检验附着力、效果图与实际颜色的色差。


用于维修项目:验证与旧涂层的兼容性。


用于日常修补:提供少量样品用于修补破损处。


申请用量:在1KG以内免费送货上门。


2、免费打样

如果您想看到工业重防腐油漆在产品上的实际应用、外观、性能测试,请与我们客服人员联系,将样板寄往梦能科技营销部,由专业喷涂人员为样板提供油漆打样。


3、服务团队

梦能对技术服务团队始终进行一系列的标准化管理,从专业培训到日常报告的管理都有一整套完善的体系。梦能公司每年都会对技术服务人员进行定期的技术培训和能力审计,以使每一位技术服务人员保持高水准的专业素质,每一位技术服务人员都配备先进的涂装检验仪器,仪器设备均按规定的时间期限进行定期校验,以保证每套仪器设备工作状况良好。


4、购买通道

零售:购买50kg以内,线上购买,抖店直接下单购买。


工厂业务:长期合作、量大从优、生产调试、质量检测、开具13%专用发票


贸易、代理:提供代工业务支持,项目保护。


业主、总包、设计院:提供防腐方案设计、性能检测、施工方案、现场技术指导。


涂装施工:提供解决方案、现场技术指导。


上一条:我国腐蚀成本及其防控策略 下一条:油气管道在线腐蚀监测技术的研究现状及发展趋势

返回行业新闻列表

2024-09-20 17:05 点击量:12