杨梅园土壤优势放线菌的分离及其防病促生功能
[1]
何新华, 陈力耕, 陈怡, 郭长禄. 中国杨梅资源及利用研究评述. 果树学报, 2004, 21(5): 467-471. doi: 10.13925/j.cnki.gsxb.2004.05.017.
doi: 10.13925/j.cnki.gsxb.2004.05.017
HE X H, CHEN L G, CHEN Y, GUO C L. Review on germplasm resources of Myrica and their exploitation in China. Journal of Fruit Science, 2004, 21(5): 467-471. doi: 10.13925/j.cnki.gsxb.2004.05.017. (in Chinese)
doi: 10.13925/j.cnki.gsxb.2004.05.017
[2]
冯健玲, 何新华, 李一伟, 李峰, 秦荣耀. 广西杨梅根瘤Frankia菌的分离和培养特性研究. 西南农业学报, 2012, 25(1): 236-239. doi: 10.16213/j.cnki.scjas.2012.01.059.
doi: 10.16213/j.cnki.scjas.2012.01.059
FENG J L, HE X H, LI Y W, LI F, QIN R Y. Isolation and cultural features of Frankia on root nodule of red bayberry in Guangxi. Southwest China Journal of Agricultural Sciences, 2012, 25(1): 236-239. doi: 10.16213/j.cnki.scjas.2012.01.059. (in Chinese)
doi: 10.16213/j.cnki.scjas.2012.01.059
[3]
张勇, 刘海英, 吕爱华, 吴翠蓉, 吴家森, 傅伟军, 王晓晓, 蒋仲龙. 杨梅根系和土壤微生物量碳、氮、磷生态化学计量随林龄的变化. 生态科学, 2022, 41(1): 84-90. doi: 10.14108/j.cnki.1008-8873.2022.01.010.
doi: 10.14108/j.cnki.1008-8873.2022.01.010
ZHANG Y, LIU H Y, LÜ A H, WU C R, WU J S, FU W J, WANG X X, JIANG Z L. The variation of ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in root system of Myrica rubra and its soil microbial biomass with different stand ages. Ecological Science, 2022, 41(1): 84-90. doi: 10.14108/j.cnki.1008-8873.2022.01.010. (in Chinese)
doi: 10.14108/j.cnki.1008-8873.2022.01.010
[4]
PEREZ-MONTANO F, ALIAS-VILLEGAS C, BELLOGIN R A, DEL CERRO P, ESPUNY M R, JIMENEZ-GUERRERO I, LOPEZ- BAENA F J, OLLERO F J, CUBO T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 2014, 169(5/6): 325-336. doi: 10.1016/j.micres.2013.09.011.
doi: 10.1016/j.micres.2013.09.011
[5]
NGALIMAT M S, MOHD HATA E, ZULPERI D, ISMAIL S I, ISMAIL M R, MOHD ZAINUDIN N A I, SAIDI N B, YUSOF M T. Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms, 2021, 9(4): 682. doi: 10.3390/microorganisms9040682.
doi: 10.3390/microorganisms9040682
[6]
穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展. 生命科学, 2022, 34(2): 118-127. doi: 10.13376/j.cbls/2022014.
doi: 10.13376/j.cbls/2022014
MU W Q, KANG S M, LI P L. Advances in rhizosphere growth- promoting bacteria function on plant growth facilitation and their mechanisms. Chinese Bulletin of Life Sciences, 2022, 34(2): 118-127. doi: 10.13376/j.cbls/2022014. (in Chinese)
doi: 10.13376/j.cbls/2022014
[7]
LIU H, CHEN G H, SUN J J, CHEN S, FANG Y, REN J H. Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants. Frontiers in Microbiology, 2022, 13: 792876. doi: 10.3389/fmicb.2022.792876.
doi: 10.3389/fmicb.2022.792876
[8]
MEENA M, SWAPNIL P, DIVYANSHU K, KUMAR S, HARISH, TRIPATHI Y N, ZEHRA A, MARWAL A, UPADHYAY R S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 2020, 60(10): 828-861. doi: 10.1002/jobm.202000370.
doi: 10.1002/jobm.202000370
[9]
周亚男, 韩小斌, 魏可可, 芶剑渝, 王先勃, 张成省, 郑艳芬. 烟草根际可培养微生物多样性及防病促生菌的筛选. 微生物学通报, 2021, 48(12): 4649-4663. doi: 10.13344/j.microbiol.china.210398.
doi: 10.13344/j.microbiol.china.210398
ZHOU Y N, HAN X B, WEI K K, GOU J Y, WANG X B, ZHANG C S, ZHENG Y F. The culturable microbial diversity in tobacco rhizosphere and their plant growth-promoting and biocontrol properties. Microbiology China, 2021, 48(12): 4649-4663. doi: 10.13344/j.microbiol.china.210398. (in Chinese)
doi: 10.13344/j.microbiol.china.210398
[10]
许世洋, 范雨轩, 汪学苗, 张怡忻, 柴继宽, 李建军, 李敏权, 漆永红, 李雪萍. 辣椒镰孢根腐病防病促生细菌的筛选及其效应. 微生物学报, 2022, 62(7): 2735-2750. doi: 10.13343/j.cnki.wsxb.20210693.
doi: 10.13343/j.cnki.wsxb.20210693
XU S Y, FAN Y X, WANG X M, ZHANG Y X, CHAI J K, LI J J, LI M Q, QI Y H, LI X P. The Fusarium root rot-controlling effect and growth-promoting effect of the bacteria in the rhizosphere of Capsicum annuum. Acta Microbiologica Sinica, 2022, 62(7): 2735-2750. doi: 10.13343/j.cnki.wsxb.20210693. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20210693
[11]
刘灵芝, 秦嗣军, 吕德国, 王冰营. 樱桃园土壤优势放线菌的分离及其促长功能研究. 中国农业科学, 2013, 46(6): 1221-1229. doi: 10.3864/j.issn.0578-1752.2013.06.016.
doi: 10.3864/j.issn.0578-1752.2013.06.016
LIU L Z, QIN S J, LÜ D G, WANG B Y. Isolation of dominant actinomycetes from cherry orchard soil and their functions in bio-control and plant promotion. Scientia Agricultura Sinica, 2013, 46(6): 1221-1229. doi: 10.3864/j.issn.0578-1752.2013.06.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.06.016
[12]
WANG H, LIU R, YOU M P, BARBETTI M J, CHEN Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 2021, 9(9): 1988. doi: 10.3390/microorganisms9091988.
doi: 10.3390/microorganisms9091988
[13]
BOWYA T, BALACHANDAR D. Harnessing PGPR inoculation through exogenous foliar application of salicylic acid and microbial extracts for improving rice growth. Journal of Basic Microbiology, 2020, 60(11/12): 950-961. doi: 10.1002/jobm.202000405.
doi: 10.1002/jobm.202000405
[14]
PEREIRA S I A, ABRUE D, MOREIRA H, VEGA A, CASTRO P M L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 2020, 6(10): e05106. doi: 10.1016/j.heliyon.2020.e05106.
doi: 10.1016/j.heliyon.2020.e05106
[15]
王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究. 作物学报, 2022, 48(6): 1546-1557. doi: 10.3724/sp.j.1006.2022.14108.
doi: 10.3724/SP.J.1006.2022.14108
WANG X D, YANG S Y Y, GAO R J, YU J J, ZHENG D P, NI F, JIANG D H. Screening Streptomyces against Xanthomonas axonopodis pv. glycines and study of growth-promoting and biocontrol effect. Acta Agronomica Sinica, 2022, 48(6): 1546-1557. doi: 10.3724/sp.j.1006.2022.14108. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14108
[16]
宁楚涵, 李文彬, 张晨, 刘润进. 定殖植物根内和根围放线菌的分离鉴定及其体外抑菌促生效应. 微生物学报, 2019, 59(10): 2024-2037. doi: 10.13343/j.cnki.wsxb.20180558.
doi: 10.13343/j.cnki.wsxb.20180558
NING C H, LI W B, ZHANG C, LIU R J. Isolation and identification of antagonizing and growth-promoting actinobacteria colonized in plant roots and rhizosphere. Acta Microbiologica Sinica, 2019, 59(10): 2024-2037. doi: 10.13343/j.cnki.wsxb.20180558. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20180558
[17]
刘泽平, 王志刚, 徐伟慧, 陈文晶, 吕智航, 王春龙, 史一然. 水稻根际促生菌的筛选鉴定及促生能力分析. 农业资源与环境学报, 2018, 35(2): 119-125. doi: 10.13254/j.jare.2017.0251.
doi: 10.13254/j.jare.2017.0251
LIU Z P, WANG Z G, XU W H, CHEN W J, LÜ Z H, WANG C L, SHI Y R. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria. Journal of Agricultural Resources and Environment, 2018, 35(2): 119-125. doi: 10.13254/j.jare.2017.0251. (in Chinese)
doi: 10.13254/j.jare.2017.0251
[18]
PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118(1): 10-15. doi: 10.1034/j.1399-3054.2003.00086.x.
doi: 10.1034/j.1399-3054.2003.00086.x
[19]
漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究. 草业学报, 2021, 30(1): 59-71. doi: 10.11686/cyxb2020321.
doi: 10.11686/cyxb2020321
MAN J, TANG B, DENG B, LI J H, HE Y J, ZHANG J L. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis. Acta Prataculturae Sinica, 2021, 30(1): 59-71. doi: 10.11686/cyxb2020321. (in Chinese)
doi: 10.11686/cyxb2020321
[20]
SCHWYN B, NEILANDS J B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1): 47-56. doi: 10.1016/0003-2697(87)90612-9.
doi: 10.1016/0003-2697(87)90612-9
[21]
阮继生, 黄英. 放线菌快速鉴定与系统分类. 北京: 科学出版社, 2011: 52-98.
RUAN J S, HUANG Y. Rapid Identification and Systematics of Actinobacteria. Beijing: Science Press, 2011: 52-98. (in Chinese)
[22]
HOZZEIN W N, ABUELSOUD W, WADAAN M A M, SHUIKAN A M, SELIM S, AL JAOUNI S, ABDELGAWAD H. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. The Science of the Total Environment, 2019, 651(2): 2787-2798. doi: 10.1016/j.scitotenv.2018.10.048.
doi: 10.1016/j.scitotenv.2018.10.048
[23]
VAN DER MEIJ A, WORSLEY S F, HUTCHINGS M I, VAN WEZEL G P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 2017, 41(3): 392-416. doi: 10.1093/femsre/fux005.
doi: 10.1093/femsre/fux005
pmid: 28521336
[24]
OLANREWAJU O S, BABALOLA O O. Streptomyces: Implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology, 2019, 103(3): 1179-1188. doi: 10.1007/s00253-018-09577-y.
doi: 10.1007/s00253-018-09577-y
pmid: 30594952
[25]
王岳, 丁国栋, 刘梦婕, 高广磊, 于明含, 李旭. 榆林沙区典型林地不同植被类型对土壤微生物群落结构的影响. 土壤通报, 2022, 53(4): 907-918. doi: 10.19336/j.cnki.trtb.2021120502.
doi: 10.19336/j.cnki.trtb.2021120502
WANG Y, DING G D, LIU M J, GAO G L, YU M H, LI X. Influence of different vegetation types on soil microbial characteristics of typical forest land in Yulin sandy area. Chinese Journal of Soil Science, 2022, 53(4): 907-918. doi: 10.19336/j.cnki.trtb.2021120502. (in Chinese)
doi: 10.19336/j.cnki.trtb.2021120502
[26]
刘敏, 车文学, 边伟杰, 甘禧霖, 赵怀宝. 八门湾红树林土壤放线菌多样性及抗病原菌活性分析. 海洋与湖沼, 2022, 53(2): 352-363. doi: 10.11693/hyhz.20210800176.
doi: 10.11693/hyhz.20210800176
LIU M, CHE W X, BIAN W J, GAN X L, ZHAO H B. Diversity and antimicrobial activity of actinobacteria in the soil of the Bamenwan mangrove in Hainan, China. Oceanologia et Limnologia Sinica, 2022, 53(2): 352-363. doi: 10.11693/hyhz.20210800176. (in Chinese)
doi: 10.11693/hyhz.20210800176
[27]
项鹏, 郝建国, 张武, 李宝华, 鹿文成, 李红鹏, 张崎峰, 陈井生, 刘大伟. 大豆胞囊线虫生防放线菌的田间防效评估及其鉴定. 中国油料作物学报, 2017, 39(2): 234-238. doi: 10.7505/j.issn.1007-9084.2017.02.014.
doi: 10.7505/j.issn.1007-9084.2017.02.014
XIANG P, HAO J G, ZHANG W, LI B H, LU W C, LI H P, ZHANG Q F, CHEN J S, LIU D W. Identification and field control efficacy of biocontrol actinomycetes against Heterodera glycines. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 234-238. doi: 10.7505/j.issn.1007-9084.2017.02.014. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2017.02.014
[28]
HASSAN S E, FOUDA A, RADWAN A A, SALEM S S, BARGHOTH M G, AWAD M A, ABDO A M, EL-GAMAL M S. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 2019, 24(3): 377-393. doi: 10.1007/s00775-019-01654-5.
doi: 10.1007/s00775-019-01654-5
[29]
FOUDA A, HASSAN S E, ABDO A M, EL-GAMAL M S. Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp.. Biological Trace Element Research, 2020, 195(2): 707-724. doi: 10.1007/s12011-019-01883-4.
doi: 10.1007/s12011-019-01883-4
[30]
KEIKHA N, AYATOLLAHI MOUSAVI S A, NAKHAEI A R, YADEGARI M H, SHAHIDI BONJAR G H, AMIRI S. In vitro evaluation of enzymatic and antifungal activities of soil-actinomycetes isolates and their molecular identification by PCR. Jundishapur Journal of Microbiology, 2015, 8(5): e14874. doi: 10.5812/jjm.8(5)2015.14874.
doi: 10.5812/jjm.8(5)2015.14874