蔬菜菌核病菌对氟吡菌酰胺的敏感性及防病应用潜力评估
摘要: 【目的】评价蔬菜菌核病菌(Sclerotinia sclerotiorum)对新型琥珀酸脱氢酶抑制剂类杀菌剂氟吡菌酰胺的敏感性,明确药剂对不同发育阶段菌核病菌的毒力效应以及氟吡菌酰胺防治蔬菜菌核病的作用方式和田间应用效果,以指导氟吡菌酰胺的科学使用。【方法】从山东省昌乐、寿光、青州、临朐和泰安等地的蔬菜产区采集173株来自黄瓜、番茄、茄子、西葫芦、芸豆、辣椒等6种作物上的田间菌核病发病组织,室内分离纯化后采用菌丝生长速率法测定其对氟吡菌酰胺的敏感性;测定氟吡菌酰胺对病菌菌核产量、菌核形态和菌核菌丝型萌发的影响;采用离体茄子叶片接种试验确定氟吡菌酰胺防治菌核病的作用方式;最后通过两年田间药效试验进一步验证其实际应用效果。【结果】氟吡菌酰胺对菌核病菌的菌丝生长具有较强的抑制活性,且对来自不同作物的173株菌核病菌的抑制中浓度(EC50)差异不大,分布在0.02—0.30 μg·mL-1,表明这些菌株可被用来分析蔬菜菌核病菌对氟吡菌酰胺的敏感性水平。EC50频率分布图呈单峰偏正态曲线分布,变异系数较小,表明该地区的蔬菜菌核病菌对氟吡菌酰胺均表现敏感。氟吡菌酰胺对菌核病菌的菌核产量、菌核形态以及菌核菌丝型萌发具有较高的抑制活性。在氟吡菌酰胺1.6 μg·mL-1处理浓度下,该药剂对3株来自不同作物的菌核病菌表现出相同的抑制趋势,其菌核的数量和干重均明显降低,形态明显变小,表明该药剂能够有效地减少菌核病菌的初侵染源数量,并降低其侵染活性;而经过连续3 d的观察,5 μg·mL-1氟吡菌酰胺对3株病菌的菌核菌丝型萌发的抑制率均在95%以上,表明该药剂有能力抑制菌核病菌的这一侵染方式,从而保护作物茎基部免受菌丝侵染。离体叶片接种防治试验表明,氟吡菌酰胺具有保护作用与治疗作用,40 μg·mL-1的保护效果为100.00%,治疗效果为88.81%,显著高于对照药剂多菌灵和菌核净的防治效果,但该药剂对菌核病的保护作用明显优于治疗作用,表明该药剂在田间使用时应在病害发病前或发病初期使用,从而获得较好的防治效果。2016和2017两年的田间药效试验中,氟吡菌酰胺200 g a.i./hm2处理对茄子菌核病的防治效果分别为90.30%和87.60%,显著高于氟吡菌酰胺其他施用剂量以及对照药剂菌核净600 g a.i./hm2、多菌灵1 150 g a.i./hm2的防治效果。【结论】新型琥珀酸脱氢酶抑制剂氟吡菌酰胺对菌核病菌的菌丝生长、菌核形成及萌发均具有较高的抑制活性,且在田间能够有效地控制菌核病发生,因此该药剂是防治菌核病的高效药剂,可作为现有防治药剂的补充。
引用本文
黄学屏,宋昱菲,罗健,赵时峰,慕卫,刘峰. 蔬菜菌核病菌对氟吡菌酰胺的敏感性及防病应用潜力评估[J]. 中国农业科学, 2018, 51(14): 2711-2718.
HUANG XuePing, SONG YuFei, LUO Jian, ZHAO ShiFeng, MU Wei, LIU Feng. Sensitivity of Sclerotinia sclerotiorum to Fluopyram and Evaluation of Its Application Potential in Controlling Sclerotinia Stem Rot[J]. Scientia Agricultura Sinica, 2018, 51(14): 2711-2718.
使用本文
0
/ /导出引用管理器
链接本文: https://www.chinaagrisci.com/CN/10.3864/j.issn.0578-1752.2018.14.008
https://www.chinaagrisci.com/CN/Y2018/V51/I14/2711
参考文献
[1] BOLAND G J, HALL R. Index of plant hosts of sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 1994, 16(2): 93-108.
[2] PURDY L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979, 69(8): 875-880. [3] BOLTON M D, THOMMA B P, NELSON B D. Sclerotinia sclerotiorum (lib.) de bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7(1): 1-16. [4] Li G Q, HUANG H C, MIAO H J, ERICKSON R S, JIANG D H, XIAO Y N. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite coniothyrium minitans. European Journal of Plant Pathology, 2006, 114(4): 345-355. [5] 李伟, 李伟, 周益军, 陈怀谷. 江苏省油菜菌核病菌对多菌灵的敏感性. 中国油料作物学报, 2007, 29(1): 63-68. LI W, LI W, ZHOU Y J, CHEN H G. Sensitivity of Sclerotinia sclerotiorum isolates to carbendazim in Jiangsu Province. Chinese Journal of Oil Crop Sciences, 2007, 29(1): 63-68. (in Chinese) [6] 匡静, 王建新, 周明国. 江苏省油菜菌核病菌对多菌灵和菌核净的抗药性监测. 中国农学通报, 2011, 27(15): 285-291. KUANG J, WANG J X, ZHOU M G. Monitoring on carbendazim and dimethachlon-resistance of Sclerotinia sclerotiorum obtained from the blight stems of rape in Jiangsu Province. Chinese Agricultural Science Bulletin, 2011, 27(15): 285-291. (in Chinese) [7] 齐永霞, 陈方新, 苏贤岩, 丁克坚, 于杰, 江茂盛. 安徽省油菜菌核病菌对多菌灵的抗药性监测. 中国农学通报, 2006, 22(9): 371-373. QI Y X, CHEN F X, SU X Y, DING K J, YU J, JIANG M S. Monitoring on carbendazim-resistance of Sclerotinia sclerotiorum obtained from the blight stems of rape in Anhui Province. Chinese Agricultural Science Bulletin, 2006, 22(9): 371-373. (in Chinese) [8] OYEDOTUN K S, LEMIRE B D. The quaternary structure of the saccharomyces cerevisiae succinate dehydrogenase homology modeling, cofactor docking, and molecular dynamics simulation studies. The Journal of Biological Chemistry, 2004, 279(10): 9424-9431. [9] Bayer Crop Science. Bayer’s fungicide Luna Sensation granted EAMU approval for lettuce in UK [EB/OL]. (2017-05-31) [2018-02- 05]. s.com/News/NewsDetail---2236 8.htm. [10] VELOUKAS T, MARKOGLOU A N, KARAOGLANIDIS G S. Differential effect of SdhB gene mutations on the sensitivity to SDHI fungicides in botrytis cinerea. Plant Disease, 2013, 97(1): 118-122. [11] WANG J X, MA H X, YU C, ZHU X F, YU W Y, TANG Z H, CHEN C J, ZHOU M G. Sensitivity of sclerotinia sclerotiorum from oilseed crops to boscalid in jiangsu province of china. Crop Protection, 2009, 28(10): 882-886. [12] SONG Y, ZHANG Z, CHEN L, HE L, LU H, REN Y, MU W, LIU F. Baseline sensitivity of botrytis cinerea to the succinate dehydrogenase inhibitor isopyrazam and efficacy of this fungicide. Plant Disease, 2016, 100(7): 1314-1320. [13] VELOUKAS T, KARAOGLANIDIS G S. Biological activity of the succinate dehydrogenase inhibitor fluopyram against botrytis cinerea and fungal baseline sensitivity. Pest Management Science, 2012, 68(6): 858-864. [14] 杨子辉, 田昊, 刘伊瑶. 新型杀菌剂-氟吡菌酰胺研究进展. 当代化工研究, 2017(4): 103-104. YANG Z H, TIAN H, LIU Y Y. Research development of new-type bactericide——fluopyram. Chemical Intermediate, 2017(4): 103-104. (in Chinese) [15] LIANG H J, DI Y L, LI J L, YOU H, ZHU F. Baseline sensitivity of pyraclostrobin and toxicity of SHAM to sclerotinia sclerotiorum. Plant Disease, 2015, 99(2): 267-273. [16] ZHOU F, ZHANG X L, LI J L, ZHU F X. Dimethachlon resistance in sclerotinia sclerotiorum in China. Plant Disease, 2014, 98(9): 1221-1226. [17] XU C, LIANG X, HOU Y P, ZHOU M. Effects of the novel fungicide benzothiostrobin on sclerotinia sclerotiorum in the laboratory and on Sclerotinia stem rot in rape fields. Plant Disease, 2015, 99(7): 969-975. [18] KUANG J, HOU Y P, WANG J X, ZHOU M G. Sensitivity of sclerotinia sclerotiorum to fludioxonil: in vitro determination of baseline sensitivity and resistance risk. Crop Protection, 2011, 30(7): 876-882. [19] 国家质量技术监督局. 农药田间药效试验准则(一)——杀菌剂防治油菜菌核病: GB/T 17980.35-2000[S]. (2000-05-01) [2018-02-05]. The state bureau of quality and technical supervision. guidelines for the field efficacy trials (I) —fungicides against Sclerotinia stem rot of rape: GB/T 17980.35-2000[S]. (2000-05-01) [2018-02-05]. (in Chinese) [20] DILLARD H R, LUDWIG J W, HUNTER J E. Conditioning sclerotia of sclerotinia sclerotiorum for carpogenic germination. Plant Disease, 1995, 79(4): 411-415. [21] CLARKSON J P, PHELPS K, WHIPPS J M, YOUNG C S, SMITH J A, WATLING M. Forecasting sclerotinia disease on lettuce: a predictive model for carpogenic germination of sclerotinia sclerotiorum sclerotia. Phytopathology, 2007, 97(5): 621-631. [22] WILLETTS H J, WONG J A L. The biology of sclerotinia sclerotiorum, s. trifoliorum and s. minor with emphasis on specific nomenclature. Botanical Review, 1980, 46(2): 101-165. [23] MILA A L, YANG X B. Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of sclerotinia sclerotiorum. Plant Disease, 2008, 92(1): 78-82. [24] ABAWI G S, GROGAN R G. Epidemiology of diseases caused by sclerotinia species. Phytopathology, 1979, 69(8): 899-904. [25] AZEVEDO L, CHAGAS-PAULA D A, KIM H, ROPUE A C M, DIAS K S T, MACHADO J C, SOARESB M G, MERTENS-TALC OTT S U. White mold (sclerotinia sclerotiorum), friend or foe: cytotoxic and mutagenic activities in vitro and in vivo. Food Research International, 2016, 80: 27-35. [26] XU C, HOU Y, WANG J, YANG G, LIANG X, ZHOU M. Activity of a novel strobilurin fungicide benzothiostrobin against sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 2014, 115: 32-38. [27] 李良孔, 袁善奎, 潘洪玉, 王岩. 琥珀酸脱氢酶抑制剂类(SDHIs)杀菌剂及其抗性研究进展. 农药, 2011, 50(3): 165-169. Li L K, YUAN S K, PAN H Y, WANG Y. Progress in research on SDHIs fungicides and its resistance. Agrochemicals, 2011, 50(3): 165-169. (in Chinese) [28] FRANKE M D, BRENNEMAN T B, STEVENSON K L, PADGETT G B. Sensitivity of isolates of sclerotium rolfsii from peanut in georgia to selected fungicides. Plant Disease, 1998, 82(5): 578-583. [29] LU X M, ZHU Z Q, DI Y L, ZHU F X. Baseline sensitivity and toxic action of flusilazole to sclerotinia sclerotiorum. Crop Protection, 2015, 78: 92-98. [30] LI J L, LIU X Y, DI Y L, LIANG H J, ZHU F X. Baseline sensitivity and control efficacy of DMI fungicide epoxiconazole against sclerotinia sclerotiorum. European Journal of Plant Pathology, 2015, 141(2): 237-246. [31] LIANG H J, DI Y L, LI J L, ZHU F X. Baseline sensitivity and control efficacy of fluazinam against sclerotinia sclerotiorum. European Journal of Plant Pathology, 2015, 142(4): 1-9. [32] DI Y L, ZHU Z Q, LU X M, ZHU F X. Baseline sensitivity and efficacy of trifloxystrobin against sclerotinia sclerotiorum. Crop Protection, 2016, 87: 31-36. [33] RUSSELL P E. Sensitivity baselines in fungicide resistance research and management. 2004. FRAC Monograph No. 3. Brussels, Belgium. g/monograph3. pdf. [34] FRAC (the Fungicide Resistance Action Committee), FRAC Code List 2018: Fungicides sorted by mode of action. info/docs/default-source/publications/frac-code-list/frac_code_list_2018- final.pdf?sfvrsn=6144b9a_2.
相关文章 15
[1]
侯将将,王金洲,孙平,朱文琰,徐靖,卢昌艾. 中国草地地上生产力氮素敏感性的时空变化[J]. 中国农业科学, 2022, 55(9): 1811-1821.
[2]
李桂香,李秀环,郝新昌,李智文,刘峰,刘西莉. 山东省多主棒孢对三种常用杀菌剂的敏感性监测及对氟吡菌酰胺的抗性[J]. 中国农业科学, 2022, 55(7): 1359-1370.
[3]
路粉,孟润杰,吴杰,赵建江,李洋,毕秋艳,韩秀英,李敬华,王文桥. 马铃薯晚疫病菌对霜脲氰抗性动态监测及药效验证[J]. 中国农业科学, 2022, 55(18): 3556-3564.
[4]
曹寒冰,谢钧宇,刘菲,高健永,王楚涵,王仁杰,谢英荷,李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性[J]. 中国农业科学, 2021, 54(21): 4611-4622.
[5]
周京龙,冯自力,魏锋,赵丽红,张亚林,周燚,冯鸿杰,朱荷琴. 棉花内生细菌YUPP-10及其分泌蛋白CGTase对棉花枯萎病的防治作用及机理[J]. 中国农业科学, 2021, 54(17): 3691-3701.
[6]
解昆仑,刘莉铭,刘美,彭斌,吴会杰,古勤生. 小西葫芦黄花叶病毒dsRNA的原核表达及其对ZYMV的防治效果[J]. 中国农业科学, 2020, 53(8): 1583-1593.
[7]
柴亚茹,丁一娟,周思钰,杨文静,闫宝琴,远俊虎,钱伟. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定[J]. 中国农业科学, 2020, 53(4): 761-770.
[8]
王君杰,王海岗,曹晓宁,陈凌,刘思辰,田翔,秦慧彬,乔治军. 糜子不同性状光周期敏感性的综合评价[J]. 中国农业科学, 2020, 53(3): 474-485.
[9]
吕楚阳,邓平川,张晓丽,孙钰超,梁五生,胡东维. 低温诱导稻曲病菌菌核形成的转录组学分析[J]. 中国农业科学, 2020, 53(22): 4571-4583.
[10]
万华方,丁一娟,陈致富,梅家琴,钱伟. 利用野生甘蓝改良油菜Ogu CMS恢复材料的菌核病抗性[J]. 中国农业科学, 2020, 53(10): 1950-1958.
[11]
周华飞,杨红福,姚克兵,庄义庆,束兆林,陈志谊. FliZ调控枯草芽孢杆菌Bs916生物膜形成 及其对水稻纹枯病的防治效果[J]. 中国农业科学, 2020, 53(1): 55-64.
[12]
揣红运,石延霞,柴阿丽,杨杰,谢学文,李宝聚. 10%乙霉威·腐霉利微粉剂的研制及其 对黄瓜棒孢叶斑病的防治效果[J]. 中国农业科学, 2019, 52(6): 1009-1020.
[13]
刘波,陈倩倩,王阶平,阮传清,陈燕萍,夏江平,车建美,陈峥,潘志针,文笑,朱育菁,张海峰,郑雪芳. 整合微生物组菌剂的提出、研发与应用[J]. 中国农业科学, 2019, 52(14): 2450-2467.
[14]
禾丽菲,陈乐乐,肖斌,赵时峰,李秀环,慕卫,刘峰. 番茄叶霉病菌对咯菌腈敏感基线的建立及田间防治效果评价[J]. 中国农业科学, 2018, 51(8): 1475-1483.
[15]
曹海潮,李秀环,王晓坤,白海秀,慕卫,刘峰. 吡唑醚菌酯及三唑类杀菌剂对番茄颈腐根腐病的防治效果[J]. 中国农业科学, 2018, 51(21): 4065-4075.
Metrics
Viewed
Cited
Full text
Abstract
Shared
本文评价