非常全面的Pandas入门教程

pandas是基于NumPy的一种数据分析工具,在机器学习任务中,我们首先需要对数据进行清洗和编辑等工作,pandas库大大简化了我们的工作量,熟练并掌握pandas常规用法是正确构建机器学习模型的第一步。

目录

如何安装pandas

如何导入pandas库和查询相应的版本信息

pandas数据类型

series教程

dataframe教程

小结

1. 如何安装Pandas

最常用的方法是通过Anaconda安装,在终端或命令符输入如下命令安装:

conda install pandas

若未安装Anaconda,使用Python自带的包管理工具pip来安装:

pip install pandas 2. 如何导入pandas库和查询相应的版本信息 import numpy as np # pandas和numpy常常结合在一起使用,导入numpy库 import pandas as pd # 导入pandas库 print(pd.__version__) # 打印pandas版本信息 #> 0.23.4 3. pandas数据类型

pandas包含两种数据类型:series和dataframe。
series是一种一维数据结构,每一个元素都带有一个索引,与一维数组的含义相似,其中索引可以为数字或字符串。series结构名称:
|索引列|数据列

在这里插入图片描述


dataframe是一种二维数据结构,数据以表格形式(与excel类似)存储,有对应的行和列。dataframe结构名称:

在这里插入图片描述

4. series教程

如何从列表,数组,字典构建series

mylist = list('abcedfghijklmnopqrstuvwxyz') # 列表 myarr = np.arange(26) # 数组 mydict = dict(zip(mylist, myarr)) # 字典 # 构建方法 ser1 = pd.Series(mylist) ser2 = pd.Series(myarr) ser3 = pd.Series(mydict) print(ser3.head()) # 打印前5个数据 #> a 0 b 1 c 2 d 4 e 3 dtype:int64

如何使series的索引列转化为dataframe的列

mylist = list('abcedfghijklmnopqrstuvwxyz') myarr = np.arange(26) mydict = dict(zip(mylist, myarr)) ser = pd.Series(mydict) # series转换为dataframe df = ser.to_frame() # 索引列转换为dataframe的列 df.reset_index(inplace=True) print(df.head()) #> index 0 0 a 0 1 b 1 2 c 2 3 e 3 4 d 4

如何结合多个series组成dataframe

# 构建series1 ser1 = pd.Series(list('abcedfghijklmnopqrstuvwxyz')) # 构建series2 ser2 = pd.Series(np.arange(26)) # 方法1,axis=1表示列拼接,0表示行拼接 df = pd.concat([ser1, ser2], axis=1) # 与方法1相比,方法2设置了列名 df = pd.DataFrame({'col1': ser1, 'col2': ser2}) print(df.head()) #> col1 col2 0 a 0 1 b 1 2 c 2 3 e 3 4 d 4

如何命名列索引的名称

ser = pd.Series(list('abcedfghijklmnopqrstuvwxyz')) \# 命名索引列名称 ser.name = 'alphabets' \# 显示前5行数据 ser.head() #> 0 a 1 b 2 c 3 e 4 d Name: alphabets, dtype: object

如何获得series对象A中不包含series对象B的元素

ser1 = pd.Series([1, 2, 3, 4, 5]) ser2 = pd.Series([4, 5, 6, 7, 8]) \# 返回ser1不包含ser2的布尔型series ser3=~ser1.isin(ser2) \# 获取ser不包含ser2的元素 ser1[ser3] #> 0 1 1 2 2 3 dtype: int64

如何获得seriesA和seriesB不相同的项

ser1 = pd.Series([1, 2, 3, 4, 5]) ser2 = pd.Series([4, 5, 6, 7, 8]) \# 求ser1和ser2的并集 ser_u = pd.Series(np.union1d(ser1, ser2)) # 求ser1和ser2的交集 ser_i = pd.Series(np.intersect1d(ser1, ser2)) \# ser_i在ser_u的补集就是ser1和ser2不相同的项 ser_u[~ser_u.isin(ser_i)] #> 0 1 1 2 2 3 5 6 6 7 7 8 dtype: int64

如何获得数值series的四分位值

\# 设置随机数种子 state = np.random.RandomState(100) \# 从均值为5标准差为25的正态分布随机抽取5个点构成series ser = pd.Series(state.normal(10, 5, 25)) \# 求ser的四分位数 np.percentile(ser, q=[0, 25, 50, 75, 100]) #> array([ 1.25117263, 7.70986507, 10.92259345, 13.36360403, 18.0949083 ])

如何获得series中单一项的频率计数

#从0~7随机抽取30个列表值,组成series ser = pd.Series(np.take(list('abcdefgh'), np.random.randint(8, size=30))) # 对该series进行计数 ser.value_counts() #> d 8 g 6 b 6 a 5 e 2 h 2 f 1 dtype: int64

如何保留series中前两个频次最多的项,其他项替换为‘other’

np.random.RandomState(100) \# 从1~4均匀采样12个点组成series ser = pd.Series(np.random.randint(1, 5, [12])) # 除前两行索引对应的值不变,后几行索引对应的值为Other ser[~ser.isin(ser.value_counts().index[:2])] = 'Other' ser #> 0 Other 1 4 2 2 3 2 4 4 5 Other 6 Other 7 Other 8 4 9 4 10 4 11 2 dtype: object

如何对数值series分成10个相同数目的组
换个角度理解,对数值series离散化成10个类别(categorical)值

ser = pd.Series(np.random.random(20)) \# 离散化10个类别值,只显示前5行的数据 pd.qcut(ser, q=[0, .10, .20, .3, .4, .5, .6, .7, .8, .9, 1], labels=['1st', '2nd', '3rd', '4th', '5th', '6th', '7th', '8th', '9th', '10th']).head() #> 0 3rd 1 1st 2 6th 3 6th 4 9th dtype: category Categories (10, object): [1st < 2nd < 3rd < 4th ... 7th < 8th < 9th < 10th]

如何使numpy数组转化为给定形状的dataframe

ser = pd.Series(np.random.randint(1, 10, 35)) \# serier类型转换numpy类型,然后重构 df = pd.DataFrame(ser.values.reshape(7,5)) print(df) #> 0 1 2 3 4 0 1 2 1 2 5 1 1 2 4 5 2 2 1 3 3 2 8 3 8 6 4 9 6 4 2 1 1 8 5 5 3 2 8 5 6 6 1 5 5 4 6

如何找到series的值是3的倍数的位置

ser = pd.Series(np.random.randint(1, 10, 7)) print(ser) # 获取值是3倍数的索引 np.argwhere(ser % 3==0) #> 0 6 1 8 2 6 3 7 4 6 5 2 6 4 dtype: int64 #> array([[0], [2], [4]])

获取series中给定索引的元素(items)

ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz')) index = [0, 4, 8, 14, 20] # 获取指定索引的元素 ser.take(index) #> 0 a 4 e 8 i 14 o 20 u dtype: object

如何垂直和水平的拼接series

ser1 = pd.Series(range(5)) ser2 = pd.Series(list('abcde')) # 垂直拼接 df = pd.concat([ser1, ser2], axis=0) # 水平拼接 df = pd.concat([ser1, ser2], axis=1) print(df) #> 0 1 0 0 a 1 1 b 2 2 c 3 3 d 4 4 e

15.如何获取series对象A中包含series对象B元素的位置

# ser1必须包含ser2,否则会报错 ser1 = pd.Series([10, 9, 6, 5, 3, 1, 12, 8, 13]) ser2 = pd.Series([1, 3, 10, 13]) # 方法 1 [np.where(i == ser1)[0].tolist()[0] for i in ser2] # 方法 2 [pd.Index(ser1).get_loc(i) for i in ser2] #> [5, 4, 0, 8] 16.如何计算series之间的均方差 truth = pd.Series(range(10)) pred = pd.Series(range(10)) + np.random.random(10) # 均方差 np.mean((truth-pred)**2) #> 0.25508722434194103

17.如何使series中每个元素的首字母为大写

# series的元素为str类型 ser = pd.Series(['how', 'to', 'kick', 'ass?']) # 方法 1 ser.map(lambda x: x.title()) # 方法 2 ,字符串相加 ser.map(lambda x: x[0].upper() + x[1:]) # 方法 3 pd.Series([i.title() for i in ser]) #> 0 How 1 To 2 Kick 3 Ass? dtype: object

18.如何计算series中每个元素的字符串长度

ser = pd.Series(['how', 'to', 'kick', 'ass?']) # 方法 ser.map(lambda x: len(x)) #> 0 3 1 2 2 4 3 4 dtype: int64

19.如何计算series的一阶导和二阶导

ser = pd.Series([1, 3, 6, 10, 15, 21, 27, 35]) # 求一阶导并转化为列表类型 print(ser.diff().tolist()) # 求二阶导并转化为列表类型 print(ser.diff().diff().tolist()) #> [nan, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0, 8.0] [nan, nan, 1.0, 1.0, 1.0, 1.0, 0.0, 2.0]

20.如何将一系列日期字符串转换为timeseries

ser = pd.Series(['01 Jan 2010', '02-02-2011', '20120303', '2013/04/04', '2014-05-05', '2015-06-06T12:20']) pd.to_datetime(ser) #> 0 2010-01-01 00:00:00 1 2011-02-02 00:00:00 2 2012-03-03 00:00:00 3 2013-04-04 00:00:00 4 2014-05-05 00:00:00 5 2015-06-06 12:20:00 dtype: datetime64[ns]

如何从一个series中获取至少包含两个元音的元素

ser = pd.Series(['Apple', 'Orange', 'Plan', 'Python', 'Money']) # 方法 from collections import Counter # Counter是一个类字典类型,键是元素值,值是元素出现的次数,满足条件的元素返回True mask = ser.map(lambda x: sum([Counter(x.lower()).get(i, 0) for i in list('aeiou')]) >= 2) ser[mask] #> 0 Apple 1 Orange 4 Money dtype: object

如何计算根据另一个series分组后的series均值

fruit = pd.Series(np.random.choice(['apple', 'banana', 'carrot'], 10)) weights = pd.Series(np.linspace(1, 10, 10)) \# 根据fruit对weight分组 weightsGrouped = weights.groupby(fruit) print(weightsGrouped.indices) \# 对分组后series求每个索引的平均值 weightsGrouped.mean() #> {'apple': array([0, 3], dtype=int64), 'banana': array([1, 2, 4, 8], dtype=int64), 'carrot': array([5, 6, 7, 9], dtype=int64)} #> apple 2.50 banana 4.75 carrot 7.75 dtype: float64

如何计算两个series之间的欧氏距离

p = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) q = pd.Series([10, 9, 8, 7, 6, 5, 4, 3, 2, 1]) \# 方法1 sum((p - q)**2)**.5 \# 方法2 np.linalg.norm(p-q) #> 18.16590212458495

如何在数值series中找局部最大值
局部最大值对应二阶导局部最小值

ser = pd.Series([2, 10, 3, 4, 9, 10, 2, 7, 3]) \# 二阶导 dd = np.diff(np.sign(np.diff(ser))) \# 二阶导的最小值对应的值为最大值,返回最大值的索引 peak_locs = np.where(dd == -2)[0] + 1 peak_locs #> array([1, 5, 7], dtype=int64)

如何用最少出现的字符替换空格符

my_str = 'dbc deb abed gade' # 方法 ser = pd.Series(list('dbc deb abed gade')) # 统计元素的频数 freq = ser.value_counts() print(freq) # 求最小频数的字符 least_freq = freq.dropna().index[-1] # 替换 "".join(ser.replace(' ', least_freq)) #> d 4 3 b 3 e 3 a 2 c 1 g 1 dtype: int64 #> 'dbcgdebgabedggade'

如何计算数值series的自相关系数

ser = pd.Series(np.arange(20) + np.random.normal(1, 10, 20)) # 求series的自相关系数,i为偏移量 autocorrelations = [ser.autocorr(i).round(2) for i in range(11)] print(autocorrelations[1:]) # 选择最大的偏移量 print('Lag having highest correlation: ', np.argmax(np.abs(autocorrelations[1:]))+1) #> [0.33, 0.41, 0.48, 0.01, 0.21, 0.16, -0.11, 0.05, 0.34, -0.24] #> Lag having highest correlation: 3

如何对series进行算术运算操作

# 如何对series之间进行算法运算 import pandas as pd series1 = pd.Series([3,4,4,4],['index1','index2','index3','index4']) series2 = pd.Series([2,2,2,2],['index1','index2','index33','index44']) # 加法 series_add = series1 + series2 print(series_add) # 减法 series_minus = series1 - series2 # series_minus # 乘法 series_multi = series1 * series2 # series_multi # 除法 series_div = series1/series2 series_div series是基于索引进行算数运算操作的,pandas会根据索引对数据进行运算,若series之间有不同的索引,对应的值就为Nan。结果如下: #加法: index1 5.0 index2 6.0 index3 NaN index33 NaN index4 NaN index44 NaN dtype: float64 #除法: index1 1.5 index2 2.0 index3 NaN index33 NaN index4 NaN index44 NaN dtype: float64 5. dataframe教程

如何从csv文件只读取前几行的数据

# 只读取前2行和指定列的数据 df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv',nrows=2,usecols=['Model','Length']) df #> Model Length 0 Integra 177 1 Legend 195

如何从csv文件中每隔n行来创建dataframe

# 每隔50行读取一行数据 df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv', chunksize=50) df2 = pd.DataFrame() for chunk in df: # 获取series df2 = df2.append(chunk.iloc[0,:]) #显示前5行 print(df2.head()) #> crim zn indus chas nox rm age \ 0 0.21977 0.0 6.91 0 0.44799999999999995 5.602 62.0 1 0.0686 0.0 2.89 0 0.445 7.416 62.5 2 2.7339700000000002 0.0 19.58 0 0.871 5.597 94.9 3 0.0315 95.0 1.47 0 0.40299999999999997 6.975 15.3 4 0.19072999999999998 22.0 5.86 0 0.431 6.718 17.5 dis rad tax ptratio b lstat medv 0 6.0877 3 233 17.9 396.9 16.2 19.4 1 3.4952 2 276 18.0 396.9 6.19 33.2 2 1.5257 5 403 14.7 351.85 21.45 15.4 3 7.6534 3 402 17.0 396.9 4.56 34.9 4 7.8265 7 330 19.1 393.74 6.56 26.2

如何改变导入csv文件的列值
改变列名‘medv’的值,当列值≤25时,赋值为‘Low’;列值>25时,赋值为‘High’.

# 使用converters参数,改变medv列的值 df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv', converters={'medv': lambda x: 'High' if float(x) > 25 else 'Low'}) print(df.head()) #> b lstat medv 0 396.90 4.98 Low 1 396.90 9.14 Low 2 392.83 4.03 High 3 394.63 2.94 High 4 396.90 5.33 High

如何从csv文件导入指定的列

# 导入指定的列:crim和medv df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv', usecols=['crim', 'medv']) # 打印前四行dataframe信息 print(df.head()) #> crim medv 0 0.00632 24.0 1 0.02731 21.6 2 0.02729 34.7 3 0.03237 33.4 4 0.06905 36.2

如何得到dataframe的行,列,每一列的类型和相应的描述统计信息

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv') # 打印dataframe的行和列 print(df.shape) # 打印dataframe每列元素的类型显示前5行 print(df.dtypes.head()) # 统计各类型的数目,方法1 print(df.get_dtype_counts()) # 统计各类型的数目,方法2 # print(df.dtypes.value_counts()) # 描述每列的统计信息,如std,四分位数等 df_stats = df.describe() # dataframe转化数组 df_arr = df.values # 数组转化为列表 df_list = df.values.tolist() #> (93, 27) Manufacturer object Model object Type object Min.Price float64 Price float64 dtype: object float64 18 object 9 dtype: int64

如何获取给定条件的行和列

import numpy as np df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv') # print(df) # 获取最大值的行和列 row, col = np.where(df.values == np.max(df.Price)) # 行和列获取最大值 print(df.iat[row[0], col[0]]) df.iloc[row[0], col[0]] # 行索引和列名获取最大值 df.at[row[0], 'Price'] df.get_value(row[0], 'Price') #> 61.9

如何重命名dataframe的特定列

df1 = pd.DataFrame(data=np.array([[18,50],[19,51],[20,55]]),index=['man1','man2','man3'],columns=['age','weight']) print(df1) # 修改列名 print("\nchange columns :\n") #方法1 df1.rename(columns={'weight':'stress'}) #方法2 df1.columns.values[1] = 'stress' print(df1) #> age weight man1 18 50 man2 19 51 man3 20 55 change columns : age stress man1 18 50 man2 19 51 man3 20 55

如何检查dataframe中是否有缺失值

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv') # 若有缺失值,则为Ture df.isnull().values.any() #> True 9. 如何统计dataframe的每列中缺失值的个数 df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv') # 获取每列的缺失值个数 n_missings_each_col = df.apply(lambda x: x.isnull().sum()) print(n_missings_each_col.head()) #> Manufacturer 4 Model 1 Type 3 Min.Price 7 Price 2 dtype: int64

如何用平均值替换相应列的缺失值

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv',nrows=10) print(df[['Min.Price','Max.Price']].head()) # 平均值替换缺失值 df_out = df[['Min.Price', 'Max.Price']] = df[['Min.Price', 'Max.Price']].apply(lambda x: x.fillna(x.mean())) print(df_out.head()) #> Min.Price Max.Price 0 12.9 18.8 1 29.2 38.7 2 25.9 32.3 3 NaN 44.6 4 NaN NaN #> Min.Price Max.Price 0 12.9 18.8 1 29.2 38.7 2 25.9 32.3 3 23.0 44.6 4 23.0 29.9

如何用全局变量作为apply函数的附加参数处理指定的列

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv') print(df[['Min.Price', 'Max.Price']].head()) # 全局变量 d = {'Min.Price': np.nanmean, 'Max.Price': np.nanmedian} # 列名Min.Price的缺失值用平均值代替,Max.Price的缺失值用中值代替 df[['Min.Price', 'Max.Price']] = df[['Min.Price', 'Max.Price']].apply(lambda x, d: x.fillna(d[x.name](x)), args=(d, )) print(df[['Min.Price', 'Max.Price']].head()) #> Min.Price Max.Price 0 12.9 18.8 1 29.2 38.7 2 25.9 32.3 3 NaN 44.6 4 NaN NaN #> Min.Price Max.Price 0 12.900000 18.80 1 29.200000 38.70 2 25.900000 32.30 3 17.118605 44.60 4 17.118605 19.15

如何以dataframe的形式选择特定的列

df = pd.DataFrame(np.arange(20).reshape(-1, 5), columns=list('abcde')) # print(df) # 以dataframe的形式选择特定的列 type(df[['a']]) type(df.loc[:, ['a']]) print(type(df.iloc[:, [0]])) # 以series的形式选择特定的列 type(df.a) type(df['a']) type(df.loc[:, 'a']) print(type(df.iloc[:, 1])) #> <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.series.Series'>

如何改变dataframe中的列顺序

df = pd.DataFrame(np.arange(20).reshape(-1, 5), columns=list('abcde')) print(df) # 交换col1和col2 def switch_columns(df, col1=None, col2=None): colnames = df.columns.tolist() i1, i2 = colnames.index(col1), colnames.index(col2) colnames[i2], colnames[i1] = colnames[i1], colnames[i2] return df[colnames] df1 = switch_columns(df, 'a', 'c') print(df1) #> a b c d e 0 0 1 2 3 4 1 5 6 7 8 9 2 10 11 12 13 14 3 15 16 17 18 19 #> c b a d e 0 2 1 0 3 4 1 7 6 5 8 9 2 12 11 10 13 14 3 17 16 15 18 19

如何格式化dataframe的值

df = pd.DataFrame(np.random.random(4)**10, columns=['random']) print(df) # 显示小数点后四位 df.apply(lambda x: '%.4f' % x, axis=1) print(df) #> random 0 3.539348e-04 1 3.864140e-10 2 2.973575e-02 3 1.414061e-01 #> random 0 3.539348e-04 1 3.864140e-10 2 2.973575e-02 3 1.414061e-01

如何将dataframe中的所有值以百分数的格式表示

df = pd.DataFrame(np.random.random(4), columns=['random']) # 格式化为小数点后两位的百分数 out = df.style.format({ 'random': '{0:.2%}'.format, }) out #> random 0 48.54% 1 91.51% 2 90.83% 3 20.45%

16.如何从dataframe中每隔n行构建dataframe

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/Cars93_miss.csv') # 每隔20行读dataframe数据 print(df.iloc[::20, :][['Manufacturer', 'Model', 'Type']]) #> Manufacturer Model Type 0 Acura Integra Small 20 Chrysler LeBaron Compact 40 Honda Prelude Sporty 60 Mercury Cougar Midsize 80 Subaru Loyale Small

如何得到列中前n个最大值对应的索引

df = pd.DataFrame(np.random.randint(1, 15, 15).reshape(5,-1), columns=list('abc')) print(df) # 取'a'列前3个最大值对应的行 n = 5 df['a'].argsort()[::-1].iloc[:3] #> a b c 0 5 5 2 1 12 7 1 2 5 2 12 3 5 14 12 4 1 13 13 #> 4 1 3 3 2 2 Name: a, dtype: int64

如何获得dataframe行的和大于100的最末n行索引

df = pd.DataFrame(np.random.randint(10, 40, 16).reshape(-1, 4)) print(df) # dataframe每行的和 rowsums = df.apply(np.sum, axis=1) # 选取大于100的最末两行索引 # last_two_rows = df.iloc[np.where(rowsums > 100)[0][-2:], :] nline = np.where(rowsums > 100)[0][-2:] nline #> 0 1 2 3 0 19 34 15 12 1 38 35 14 26 2 39 32 18 20 3 28 27 36 38 #> array([2, 3], dtype=int64)

如何从series中查找异常值并赋值

ser = pd.Series(np.logspace(-2, 2, 30)) # 小于low_per分位的数赋值为low,大于low_per分位的数赋值为high def cap_outliers(ser, low_perc, high_perc): low, high = ser.quantile([low_perc, high_perc]) print(low_perc, '%ile: ', low, '|', high_perc, '%ile: ', high) ser[ser < low] = low ser[ser > high] = high return(ser) capped_ser = cap_outliers(ser, .05, .95) #> 0.05 %ile: 0.016049294076965887 | 0.95 %ile: 63.876672220183934

如何交换dataframe的两行

df = pd.DataFrame(np.arange(9).reshape(3, -1)) print(df) # 函数 def swap_rows(df, i1, i2): a, b = df.iloc[i1, :].copy(), df.iloc[i2, :].copy() # 通过iloc换行 df.iloc[i1, :], df.iloc[i2, :] = b, a return df # 2和3行互换 print(swap_rows(df, 1, 2)) #> 0 1 2 0 0 1 2 1 3 4 5 2 6 7 8 #> 0 1 2 0 0 1 2 1 6 7 8 2 3 4 5

如何倒转dataframe的行

df = pd.DataFrame(np.arange(9).reshape(3, -1)) print(df) # 方法 1 df.iloc[::-1, :] # 方法 2 print(df.loc[df.index[::-1], :]) #> 0 1 2 0 0 1 2 1 3 4 5 2 6 7 8 #> 0 1 2 2 6 7 8 1 3 4 5 0 0 1 2

如何对分类变量进行one-hot编码

df = pd.DataFrame(np.arange(25).reshape(5,-1), columns=list('abcde')) print(df) # 对列'a'进行onehot编码 df_onehot = pd.concat([pd.get_dummies(df['a']), df[list('bcde')]], axis=1) print(df_onehot) #> a b c d e 0 0 1 2 3 4 1 5 6 7 8 9 2 10 11 12 13 14 3 15 16 17 18 19 4 20 21 22 23 24 #> 0 5 10 15 20 b c d e 0 1 0 0 0 0 1 2 3 4 1 0 1 0 0 0 6 7 8 9 2 0 0 1 0 0 11 12 13 14 3 0 0 0 1 0 16 17 18 19 4 0 0 0 0 1 21 22 23 24

如何获取dataframe行方向上最大值个数最多的列

df = pd.DataFrame(np.random.randint(1,100, 9).reshape(3, -1)) print(df) # 获取每列包含行方向上最大值的个数 count_series = df.apply(np.argmax, axis=1).value_counts() print(count_series) # 输出行方向最大值个数最多的列的索引 print('Column with highest row maxes: ', count_series.index[0]) #> 0 1 2 0 46 31 34 1 38 13 6 2 1 18 15 #>统计列的最大值的个数 0 2 1 1 dtype: int64 #> Column with highest row maxes: 0

如何得到列之间最大的相关系数

df = pd.DataFrame(np.random.randint(1,100, 16).reshape(4, -1), columns=list('pqrs'), index=list('abcd')) # df print(df) # 得到四个列的相关系数 abs_corrmat = np.abs(df.corr()) print(abs_corrmat) # 得到每个列名与其他列的最大相关系数 max_corr = abs_corrmat.apply(lambda x: sorted(x)[-2]) # 显示每列与其他列的相关系数 print('Maximum Correlation possible for each column: ', np.round(max_corr.tolist(), 2)) #> p q r s a 59 99 1 34 b 89 60 97 40 c 43 35 14 6 d 70 59 30 53 #> p q r s p 1.000000 0.200375 0.860051 0.744529 q 0.200375 1.000000 0.236619 0.438541 r 0.860051 0.236619 1.000000 0.341399 s 0.744529 0.438541 0.341399 1.000000 #> Maximum Correlation possible for each column: [0.86 0.44 0.86 0.74]

如何创建包含每行最小值与最大值比例的列

df = pd.DataFrame(np.random.randint(1,100, 9).reshape(3, -1)) print(df) # 方法1:axis=1表示行方向, min_by_max = df.apply(lambda x: np.min(x)/np.max(x), axis=1) # 方法2 min_by_max = np.min(df, axis=1)/np.max(df, axis=1) min_by_max #> 0 1 2 0 81 68 59 1 45 73 23 2 20 22 69 #> 0 0.728395 1 0.315068 2 0.289855 dtype: float64

如何创建包含每行第二大值的列

df = pd.DataFrame(np.random.randint(1,100, 9).reshape(3, -1)) print(df) # 行方向上取第二大的值组成series out = df.apply(lambda x: x.sort_values().unique()[-2], axis=1) # 构建dataframe新的列 df['penultimate'] = out print(df) #> 0 1 2 0 28 77 1 1 43 19 69 2 29 30 72 #> 0 1 2 penultimate 0 28 77 1 28 1 43 19 69 43 2 29 30 72 30

如何归一化dataframe的所有列

df = pd.DataFrame(np.random.randint(1,100, 80).reshape(8, -1)) # 正态分布归一化 out1 = df.apply(lambda x: ((x - x.mean())/x.std()).round(2)) print('Solution Q1\n',out1) # 线性归一化 out2 = df.apply(lambda x: ((x.max() - x)/(x.max() - x.min())).round(2)) print('Solution Q2\n', out2)

如何计算每一行与下一行的相关性

df = pd.DataFrame(np.random.randint(1,100, 25).reshape(5, -1)) # 行与行之间的相关性 [df.iloc[i].corr(df.iloc[i+1]).round(2) for i in range(df.shape[0])[:-1]]

如何用0赋值dataframe的主对角线和副对角线

df = pd.DataFrame(np.random.randint(1,100, 25).reshape(5, -1)) print(df) # zhu for i in range(df.shape[0]): df.iat[i, i] = 0 df.iat[df.shape[0]-i-1, i] = 0 print(df) #> 0 1 2 3 4 0 51 35 71 71 79 1 78 25 71 85 44 2 90 97 72 14 4 3 27 91 37 25 48 4 1 26 68 70 20 #> 0 1 2 3 4 0 0 35 71 71 0 1 78 0 71 0 44 2 90 97 0 14 4 3 27 0 37 0 48 4 0 26 68 70 0

30.如何得到按列分组的dataframe的平均值和标准差

df = pd.DataFrame({'col1': ['apple', 'banana', 'orange'] * 2, 'col2': np.random.randint(0,15,6), 'col3': np.random.randint(0, 15, 6)}) print(df) # 按列col1分组后的平均值 df_grouped_mean = df.groupby(['col1']).mean() print(df_grouped_mean) # 按列col1分组后的标准差 df_grouped_std = df.groupby(['col1']).mean() print(df_grouped_std) #> col1 col2 col3 0 apple 2 14 1 banana 11 8 2 orange 8 10 3 apple 5 2 4 banana 6 12 5 orange 11 13 #> col2 col3 col1 apple 3.5 8.0 banana 8.5 10.0 orange 9.5 11.5 #> col2 col3 col1 apple 3.5 8.0 banana 8.5 10.0 orange 9.5 11.5

如何得到按列分组后另一列的第n大的值

df = pd.DataFrame({'fruit': ['apple', 'banana', 'orange'] * 2, 'taste': np.random.rand(6), 'price': np.random.randint(0, 15, 6)}) print(df) # teste列按fruit分组 df_grpd = df['taste'].groupby(df.fruit) # teste列中banana元素的信息 x=df_grpd.get_group('banana') # 排序并找第2大的值 s = x.sort_values().iloc[-2] print(s) #> fruit taste price 0 apple 0.521990 7 1 banana 0.640444 0 2 orange 0.460509 9 3 apple 0.818963 4 4 banana 0.646138 7 5 orange 0.917056 12 #> 0.6404436436085967

如何计算分组dataframe的平均值,并将分组列保留为另一列

df = pd.DataFrame({'fruit': ['apple', 'banana', 'orange'] * 2, 'rating': np.random.rand(6), 'price': np.random.randint(0, 15, 6)}) # 按fruit分组后,price列的平均值,并将分组置为一列 out = df.groupby('fruit', as_index=False)['price'].mean() print(out) #> fruit price 0 apple 4.0 1 banana 6.5 2 orange 11.0 33.如何获取两列值元素相等的位置(并非索引) df = pd.DataFrame({'fruit1': np.random.choice(['apple', 'orange', 'banana'], 3), 'fruit2': np.random.choice(['apple', 'orange', 'banana'], 3)}) print(df) # 获取两列元素相等的行 np.where(df.fruit1 == df.fruit2) #> fruit1 fruit2 0 apple banana 1 apple apple 2 orange apple #> (array([1], dtype=int64),)

如何创建指定列偏移后的新列

df = pd.DataFrame(np.random.randint(1, 100, 20).reshape(-1, 4), columns = list('abcd')) # 创建往下偏移后的列 df['a_lag1'] = df['a'].shift(1) # 创建往上偏移后的列 df['b_lead1'] = df['b'].shift(-1) print(df) #> a b c d a_lag1 b_lead1 0 29 90 43 24 NaN 36.0 1 94 36 67 66 29.0 76.0 2 81 76 44 49 94.0 97.0 3 55 97 10 74 81.0 43.0 4 32 43 62 62 55.0 NaN

如何获得dataframe中单一值的频数

df = pd.DataFrame(np.random.randint(1, 10, 20).reshape(-1, 4), columns = list('abcd')) # 统计元素值的个数 pd.value_counts(df.values.ravel()) #> 9 3 7 3 3 3 1 3 6 2 5 2 4 2 8 1 2 1 dtype: int64

如何将文本拆分为两个单独的列

df = pd.DataFrame(["STD, City State", "33, Kolkata West Bengal", "44, Chennai Tamil Nadu", "40, Hyderabad Telengana", "80, Bangalore Karnataka"], columns=['row']) print(df) # expand=True表示以分割符把字符串分成两列 df_out = df.row.str.split(',|\t', expand=True) # 获取新的列 new_header = df_out.iloc[0] # 重新赋值 df_out = df_out[1:] df_out.columns = new_header print(df_out) #> row 0 STD, City State 1 33, Kolkata West Bengal 2 44, Chennai Tamil Nadu 3 40, Hyderabad Telengana 4 80, Bangalore Karnataka #> 0 STD City State 1 33 Kolkata West Bengal 2 44 Chennai Tamil Nadu 3 40 Hyderabad Telengana 4 80 Bangalore Karnataka

37.如何构建多级索引的dataframe
我们利用元组(Tuple)构建多级索引,然后定义dataframe.

# 如何构建多级索引的dataframe # 先通过元组方式构建多级索引 import numpy as np outside = ['A','A','A','B','B','B'] inside =[1,2,3,1,2,3] my_index = list(zip(outside,inside)) # my_index # 转化为pd格式的索引 my_index = pd.MultiIndex.from_tuples(my_index) # my_index # 构建多级索引dataframe df = pd.DataFrame(np.random.randn(6,2),index =my_index,columns=['fea1','fea2']) df 多索引dataframe结果: 获取多索引dataframe的数据: df.loc['A'].iloc[1] #> fea1 -0.794461 fea2 0.882104 Name: 2, dtype: float64 df.loc['A'].iloc[1]['fea1'] #> -0.7944609970323794 6、小结

pandas库在机器学习项目中的应用主要有两个步骤:(1)读取文件,(2)数据清洗和编辑工作,该步骤中,我们常常需要借组numpy数组来处理数据。希望这篇文章能够让你很好的入门pandas库,多多练习才是王道 。读者能够看到这里的都是真爱,点个在看和广告呗!
参考:
https://blog.csdn.net/qq_42156420/article/details/82813482

2024-12-01 05:52 点击量:6