芽胞杆菌生物防治作用机理与应用研究进展
[1] 陈志谊, 刘永峰, 刘邮洲, 等. 植物病害生防芽孢杆菌研究进展[J]. 江苏农业学报, 2012, 28(5):999-1006.
[2] 刘国红, 林乃铨, 林营志, 等. 芽孢杆菌分类与应用研究进展[J]. 福建农业学报, 2008, 23(1):92-99.
[3] Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens:a review[J]. Biotechnology and Biotechnological Equipment, 2017, 31(3):446-459.
[4] 陈捷, 朱洁伟, 张婷, 等. 木霉菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2011, 27(2):145-151.
[5] Kunst F, Ogasawara N, Moszer I, et al.The complete genome sequence of the Gram-positive bacterium Bacillus subtilis[J]. Nature, 1997, 390:249-256.
[6] Harwood C R, Wipat A. Sequencing and functional analysis of the genome of Bacillus subtilis strain 168[J]. Febs Letters, 1996, 389(1):84-87.
[7] Jeong H, Sim Y M, Park S H, et al. Complete genome sequence of Bacillus subtilis strain ATCC6051a, a potential host for high-level secretion of industrial enzymes[J]. Genome Announc, 2015, 3(3):e00532-15.
[8] Reuβ D R, Schuldes J, Daniel R, et al. Complete genome sequence of Bacillus subtilis subsp. Subtilis strain 3NA[J]. Genome Announc, 2015, 3(2):e00084-15.
[9] Zeigler D R. The genome sequence of Bacillus subtilis subsp. spizizenii W23:Insights into speciation within the B.subtilis complex and into the history of B. subtilis genetics[J]. Microbiology, 2011, 157(Pt7):2033-2041.
[10] Li S, Yang D, Qiu M, et al. Complete genome sequence of Paenibacillus polymyxa SQR-21, a plant growth promoting rhizobacterium with antifungal activity and rhizosphere colonization ability[J]. Genome Announc, 2014, 2(2):1-2.
[11] Schnepf E, Crickmore N, Rie J V, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3):775-806.
[12] 王晓宇, 罗楚平, 陈志谊, 等. 枯草芽胞杆菌Bs-916的全基因组分析[J]. 中国农业科学, 2011, 44(23):4807-4814.
[13] Ma M, Wang C, Ding Y, et al. Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity[J]. Journal of Bacteriology, 2011, 193(1):311-312.
[14] 陈玉龙. 解淀粉芽孢杆菌CQBA03菌株基因组文库的构建和抗菌相关机制研究[D]. 重庆:重庆大学, 2015, 111.
[15] 刘超. 苏云金芽孢杆菌菌株YBT-1520全基因组序列的初步分析[D]. 武汉:华中农业大学, 2007, 27.
[16] 郑豪盈. 杀线虫芽孢杆菌(Bacillus nematocida B16) spo0A基因在生物防治应用中的功能研究[D]. 南阳:南阳师范学院, 2015, 42.
[17] Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus stubilis:isolation, characterization and its inhibition of fibrin clot formation[J]. Biochemical and Biophysical Research Communication, 1968, 31(3):488-494.
[18] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319.
[19] Coutte F, Leclère V, Béchet M, et al. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives[J]. Journal of Applied Microbiology, 2010, 109(2):480-491.
[20] Cawoy H, Mariutto M, Henry G, et al. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production[J]. Molecular Plant-Microbe Interactions, 2014, 27:87-100.
[21] Cho S J, Lee S K, Cha B J, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03[J]. FEMS microbiology letters, 2003, 223(1):47-51.
[22] 张桂英, 廖咏梅, 张君成. 甘蔗黑穗病菌拮抗性芽抱杆菌的抗菌作用与伊枯草菌素A的产生有关[J]. 广西科学, 2004, 11(3):269-272.
[23] Sabb E V, Jacobson L M, Handelsman J. Zwittermicin a-producing strains of Bacillus cereus from diverse soils[J]. Applied and Environmental Microbiology, 1994, 60(12):4404-4412.
[24] Choi S K, Park S Y, Kim R, et al. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681[J]. Biochemical and Biophysical Research Communications, 2008, 365(1):89-95.
[25] Leclère V, Béchet M, Adam A, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities[J]. Applied and Environmental Microbiology, 2005, 71(8):4577-4584.
[26] 高娃, 姜威, 孟利强, 等. 解淀粉芽孢杆菌TF28抗菌蛋白TasA基因序列分析及蛋白质结构预测[J]. 基因组学与应用生物学, 2015(2):313-318.
[27] Vega L M de la, Barboza-Corona J E, Aguilar-Uscanga M G, et al. Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi[J]. Canadian Journal of Microbiology, 2006, 52(7):651.
[28] 刘东, 陈月华, 蔡峻, 等. 苏云金芽胞杆菌几丁质酶B特性及其杀虫抑真菌的作用[J]. 微生物学报, 2009, 49(2):180-185.
[29] 潘锦华, 姜昆, 汪婷婷, 等. 苏云金芽胞杆菌CcpA蛋白对几丁质酶基因chiA和chiB的表达调控作用[J]. 微生物学通报, 2016, 43(3):510-517.
[30] Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilis autoregulate their own biosynthesis[J]. Peptides, 2004, 25:1405-1414.
[31] Yoshida S, Hiradate S, Tsukamoto T, et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves[J]. Phytopathology, 2001, 91:181-187.
[32] Liu Y, Chen Z, Ng T B, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916[J]. Peptides, 2007, 28(3):553-559.
[33] Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, et al. Fruiting body formation by Bacillus subtilis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20):11621-11626.
[34] Kearns D B, Chu E, Branda S S, et al. A master regulator for biofilm formation by Bacillus subtilis[J]. Molecular Microbiology, 2005, 55(3):739-749.
[35] Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes[J]. Journal of Bacteriology, 2007, 189(13):4920-4931.
[36] Stanley N R, Lazazzera B A. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acid production and biofilm formation[J]. Molecular Microbiology, 2005, 57(4):1143-1158.
[37] Chu F, Kearns D B, Branda S S, et al. Targets of the master regulator of biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2006, 59(4):1216-1228.
[38] Chen Y, Chai Y, Guo J H, et al. Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis[J]. Journal of Bacteriology. 2012, 194:5080-5090.
[39] Timmusk S, Wagner E G. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses[J]. Molecular Plant-Microbe Interactions, 1999, 12(11):951-959.
[40] Moreira R R, Nesi C N, Mio L L M D. Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot[J]. Biological Control, 2014, 72(1):30-37.
[41] Qiao J Q, Tian D W, Huo R, et al. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ-PhrQ system in Bacillus amyloliquefaciens B3[J]. Plasmid, 2011, 65(2):141-149.
[42] Yu X, Ai C, Xin L, et al. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper[J]. European Journal of Soil Biology, 2011, 47(2):138-145.
[43] Ongena M, Giger A, Jacques P, et al. Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1[J]. European Journal of Plant Pathology, 2002, 108(3):187-196.
[44] Niu D D, Liu H X, Jiang C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-microbe Interactions:MPMI, 2011, 24(5):533.
[45] Romeiro R S, Filho R L, Macagnan D, et al. Evidence that the biocontrol agent Bacillus cereus synthesizes protein that can elicit increased resistance of tomato leaves to Corynespora cassiicola[J]. Tropical Plant Pathology, 2010, 35(1):11-15.
[46] Driss F, Rouis S, Azzouz H, et al. Integration of a recombinant chitinase into Bacillus thuringiensis parasporal insecticidal crystal[J]. Current Microbiology, 2011, 62(1):281-288.
[47] 李晶, 张淑梅, 王玉霞, 等. 一种枯草芽孢杆菌B29菌株拌种剂对大豆根腐病的田间防效研究[J]. 微生物学通报, 2009, 36(6):842-846.
[48] 曾世涌, 温真, 何海滔, 等. 苏云金芽孢杆菌aiiA基因在枯草芽孢杆菌中的表达[J]. 福建师范大学学报(自然科学版), 2013, 29(3):104-109.
[49] Choi S K, Jeong H, Kloepper J W, et al. Genome sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product[J]. Genome Announc, 2014, 2(5):1092-1106.
[50] Idriss E E, Makarewicz O, Farouk A, et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect[J]. Microbiology, 2002, 148(7):2097-2109.
[51] Zhang H M, Murzello C, Sun Y, et al. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03)[J]. Molecular Plant-Microbe Interactions, 2010, 23(8):1097-1104.
[52] 朱天辉, 杨佐忠, 李姝江, 等. 枯草芽孢杆菌水溶性代谢产物及对血橙防腐保鲜效果[J]. 林业科学, 2010, 46(1):68-72.
[53] Fan B, Chen X H, Budiharjo A, et al. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein[J]. Journal of Biotechnology, 2011, 151(4):303.
[54] Raaijmakers J M, Leeman M, van Oorschot M M P, et al. Dose-response relationships in biological-control of Fusarium wilt of radish by Pseudomonas spp[J]. Phytopathology, 1995(85):1075-1081.
[55] 马德宾, 胡福泉. 细菌语言分子——N-乙酰高丝氨酸内酯[J]. 生命的化学, 2010(6):893-897.
[56] Chen F, Wang M, Zheng Y, et al. The effect of biocontrol bacteria on rhizosphere bacterial communities analyzed by plating and PCR-DGGE[J]. Current Microbiology, 2013, 67(2):177-182.
[57] 乔俊卿, 刘邮洲, 夏彦飞, 等. 生防菌B1619在番茄根部的定殖及对根际微生态的影响[J]. 植物保护学报, 2013, 40(6):507-511.
[58] 尹淑丽, 孙劲冲, 刘倩倩, 等. 枯草芽孢杆菌BSD-2对黄瓜叶际微生物数量及菌群结构的影响[J]. 微生物学通报, 2016, 43(12):2635-2643.
[59] Zhang B, Bai Z, Hoefel D, et al. Assessing the impact of the biological control agent Bacillus thuringiensis on the indigenous microbial community within the pepper plant phyllosphere[J]. Fems Microbiology Letters, 2008, 284(1):102-108.
[60] Rudrappa T, Czymmek K J, Pare P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008(148):1547-1556.
[61] Lee B, Lee S, Ryu C M. Foliar aphid feeding recruits rhizospherebacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper[J]. Annals of Botany, 2012(110):281-290.
[62] Balaban N P, Mardanova A M, Malikova L A, et al. Isolation and characterisation of Bacillus amyloliquefaciens H2 glutamyl endopeptidase that is secreted in stationary phase of culture growth[J]. Annals of Microbiology, 2008, 58(4):697-704.
[63] 王雪, 田佳, 徐琳琳, 等. 表达hrpZPsg12基因的重组枯草芽孢杆菌工程菌株构建及其生防活性评价[J]. 西北农林科技大学学报(自然科学版), 2015, 43(11):139-144.
[64] 高学文, 姚仕义, Huong Pham, 等. 基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J]. 中国农业科学, 2003, 36(12):1496-1501.
[65] 朱晨光, 孙明, 喻子牛. 带cry3Aa启动子的aiiA基因在苏云金芽胞杆菌中的表达[J]. 生物工程学报, 2003, 19(4):397-401.
[66] Liu J, Yan G, Shu C, et al. Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects[J]. Applied Microbiology and Biotechnology, 2010, 87(1):243-249.
[67] Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environmental Microbiology, 2007, 9:1084-1090.
[68] Guan Z B, Shui Y, Song C M, et al. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater[J]. Environmental Science and Pollution Research, 2015, 22(12):9515.
[69] 朱晓楠, 王相军, 史巧松. Bt转基因植物研究进展及其持续利用[J]. 菏泽学院学报, 2013(S1):135-137.
[70] 欧阳乐军. aiiA基因克隆及在巨尾桉中的诱导表达研究[D]. 长沙:湖南农业大学, 2012, 108.
[71] 陈向东. 枯草芽孢杆菌作为生防制剂在农业上的应用[J]. 微生物学通报, 2013, 40(7):1323-1324.
[72] 孙冰冰, 李伟, 魏军, 等. 生防芽孢杆菌的研究进展[J]. 天津农业科学, 2015, 21(12):102-107.
[73] 陈晨. 富美实在巴西首次推出生物杀线虫剂Presence[J]. 现代农药, 2017, 16(4):5.
[74] Niazy M M, Khafagy H A, Helal R G M. Phosphorus efficiency in wheat as affected by foliar spray with Zinc, humic acid and biofertilizer (Bacillus megatherium sp.) addition under calcareous soil conditions[J]. Journal of Soil Sciences and Agricultural Engineering, Mansoura University, 2016, 7(8):529-539.
[75] 刘红娟, 党志, 张慧, 等. 蜡状芽孢杆菌抗重金属性能及对镉的积累[J]. 农业环境科学学报, 2010, 29(1):25-29.
[76] Wang T, Sun H, Ren X, et al. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials[J]. Ecotoxicology and Environmental Safety, 2018, 148:285-292.